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Abstract

The coalescence collision of two liquid drops is studied using a Galerkin finite element method in conjunction with

the spine-flux method for the free surface tracking. The effects of Reynolds number, impact velocity, drop size ratio, and

internal circulation on the coalescence process is investigated. The long time oscillations of the coalesced drop are also

studied and curves for the variations of the period and decay factor are provided as a function of the number of os-

cillations. In the study of non-equal-size drop collision, traces of different fluid particles are calculated to illustrate the

liquid mixing during the collision.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Liquid drop collision is an important phenomena in

atmospheric rain drop formation, and in dispersed phase

systems such as dense sprays, liquid–liquid extraction,

emulsion polymerization, waste treatment, and hydro-

carbon fermentation [1,2]. Due to its significance, drop

collision has been the subject of numerous investigations

in the past. However, the complexity of this three-

dimensional free surface flow problem has limited the

full investigation mostly to experiments, and the existing

theoretical studies are based primarily on simplified

treatments. A detailed review of the experimental studies

was provided by Ashgriz and Poo [3] who also presented

a theoretical model for the prediction of the boundaries

between various collision outcomes. In general, the

outcome of the drop collision can be categorized into

four different types: bouncing, coalescence, separation,

and shattering collisions. Bouncing occurs when the

surrounding fluid prevents the touching of the two

drops. In this case the drops may go through deforma-

tion, however, there is no mass exchange. Coalescence

collision occurs at low velocities or low Weber numbers.

In this case the two drops combine resulting in a single

drop. Separation and shattering collisions are the con-

sequences of higher impact energy collisions. In this

paper, due to the limitations of our numerical algorithm,

we only consider the coalescence collision among two

drops.

The computational studies of drop collision are very

limited. One of the first numerical studies was published

by Foote [4], who considered the head-on collision of

equal-size drops for We < 5 using the marker-and-cell

method. Poo and Ashgriz [5] used a volume-of-fluid

based method (developed by Ashgriz and Poo [3]) to

study the collision dynamics of two drops in two-

dimensional Cartesian coordinate system. Due to the sig-

nificant role played by surface tension, the results in this

case were very different than the actual three-dimen-

sional problem. Nobari et al. [6] used a front tracking

method to simulate the head-on collision of two drops.

Their study was focused on the boundary between the

coalescence and bouncing. Menchaca-Rocha et al. [7]

simulated the binary drop collision using a nuclear-

reacting dynamic model developed by Carjan et al. [8].

Their study was aimed at determining the fragmentation

condition of the drop collision. A very brief report on

the numerical simulation of the drop collision was also

published by Riebner and Frohn [9], which mainly dis-

cusses the numerical technique and does not provide

much details on the collision behavior.
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In this paper we investigate the collision dynamics of

two drops using the spine-flux method (SFM) as ex-

plained in detail in Mashayek and Ashgriz [10]. We are

only able to consider the head-on collision of two drops

which allows an axisymmetric representation. We are

also limited to surface deformations that do not result in

double-definition of the surface along a spine (i.e. a

spine cannot intersect the surface at more than one

point, otherwise the simulation fails).

2. Formulation and methodology

To study the head-on collision of two spherical

drops, we consider the laminar axisymmetric flow of an

incompressible Newtonian viscous fluid with constant

properties. The governing equations, in non-dimen-

sional form, are described as
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Here, all lengths are normalized by the initial radius of

the larger drop, and the reference velocity is chosen

such that We ¼ 1. It is noted that for collision of non-

equal-size drops, the origin of the coordinate system is

not necessarily coincided with the CM. Therefore, the

body force generated by the acceleration of the CM has

to be included in the momentum equation. However,

owing to the axial symmetry, the CM always remains

on the z-axis and the body force due to the acceleration

of the CM is only included in the momentum equation

in the axial direction. This term is shown by €zzCM in Eq.

(2).

Both pressure and viscous effects, along with surface

tension, are included in the description of boundary

conditions at the surface of the drop. The implementa-

tion of these boundary conditions, in conjunction with a

Galerkin finite element method, is described in [10] and

will not be repeated here for brevity. The free surface is

tracked using the SFM of Mashayek and Ashgriz [10].

Here we present only a brief description of SFM, and

refer to [10] for details. To follow the motion of the free

surface, the fluid domain is divided into small subvo-

lumes which are separated by spines as shown in Fig. 1a.

The location of the interface is given by its distance from

the origin of the coordinate system along these spines.

At the end of each time step fluxes of the fluid from each

subvolume to its neighboring subvolumes are calculated

using the velocity field as determined by the finite ele-

ment solution of the governing equations. After the new

volume of the fluid in each subvolume is calculated, a

linear approximation is used to describe the part of the

free surface confined within every pair of neighboring

subvolumes. With the knowledge of the volumes of fluid

inside these subvolumes, the constants of the line are

determined and the intersection of the free surface with

the common spine between the neighboring subvolumes

is obtained. Repeating this procedure for all the spines

yields the location of the free surface which is then used

to generate a new finite element mesh for the next time

step.

In the collision of non-equal-size drops, the asym-

metric evolution of the surface may result in a surface

shape that becomes very close to the origin of the co-

ordinate frame from one side (Fig. 1b). In more severe

cases the surface may even pass the origin, resulting in

a situation where no unequivocal radial direction exists.

Obviously, when this happens, calculations become

considerably less accurate, if not impossible, unless a

measure is adopted to shift the coordinate from its

Nomenclature

L reference length scale

r radial coordinate

Re Reynolds number, qUL=l
t time

u fluid velocity in z direction

U reference velocity scale

v fluid velocity in r direction

w tangential velocity at the drop surface

We Weber number, qU 2L=r
z axial coordinate

Greek symbols

l viscosity

m kinematic viscosity

q density

C decay factor

r surface tension coefficient

Subscripts

n oscillation number

CM center of mass
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original position. One way to accomplish this task is to

consider an artificial motion of the liquid domain rel-

ative to the coordinate. This process is guaranteed not

to affect the solution, due to the invariance of the

Navier–Stokes equations under a Galilean transforma-

tion. Therefore, initially a constant axial velocity is

added to the liquid velocity field which results in a

relative motion of the liquid domain with respect to

coordinate. The magnitude of this velocity is chosen

such that it results in a proper coordinate shift during

the expected time interval. Once the coordinate is

reached to its desired position the constant velocity

is subtracted from the velocity field. This procedure is

shown schematically in Fig. 1 and explained in more

details in [10].

3. Effect of Reynolds number

In this section we will investigate the effect of varia-

tion of the Reynolds number on the outcome of the

head-on collision of two equal-size drops. The maximum

Re that we could reach without a failure of the surface

reconstruction technique is 60. The initial non-dimen-

sional relative velocity, urel ¼ 2, is held constant for all

cases and the Reynolds number is varied in the range

36Re6 60. For water drops with density q ¼ 103 kg/

m3, kinematic viscosity m ¼ 10�6 m2/s, and surface ten-

sion coefficient r ¼ 0:067 N/m, the case with Re ¼ 60

corresponds to a drop radius of 54 lm and a dimen-

sional initial relative velocity of 2.23 m/s. A 30� 9 finite

element mesh is used for the simulations and the time

increment, dt, is chosen based on the value of Re.
Shown in Fig. 2a–c is the temporal evolution of the

collision for the drops with Re ¼ 5, 30, and 60. To ini-

tiate the simulations a small initial contact is assumed

between the drops and due to the symmetry only a

quarter of the shapes shown in the figures is considered.

The early stages of collision (t < 6:5) are mainly gov-
erned by the initial kinetic energies of the drops as well

as the presence of a very large surface curvature at the

interface between them. The former results in uniform

motion of the end parts of the drops toward each other

along the z-axis, while the latter causes a fast outward

motion of the surface along the r-axis.

The curves representing the motion of the surface

points which are located on the z and r axes are shown in

Fig. 3a and b for different Re. It is clearly seen in Fig. 3a

that the motion of the surface point on the z-axis is in-

dependent of Re, during the time interval t < 6:5. The
motion of the surface point on the r-axis, however, is

more sensitive to the variation of the Reynolds number

and slows down as Re is decreased (Fig. 3b). This be-

havior can be explained by considering the fact that

since the Weber number and the initial impact velocity

are kept constant, variation of Re is inversely propor-

tional to changes of viscosity, l. Therefore, a case with
lower Re corresponds to a drop with higher viscosity

while all other parameters remain the same. It is also

known that, the viscous effects are proportional to ve-

locity gradients, not to the velocity itself; i.e., the higher

the velocity gradients, the larger the viscous effects. In

the end parts of the drops, around the z-axis, velocities

are mostly parallel to the axis and of similar magnitudes,

during the early stages of collision. As a result, smaller

viscous effects are experienced in these parts of the

drops. The fluid motion near the r-axis, however, must

Fig. 1. The coordinate shift procedure is explained by using

schematics of a drop collision problem. (a) In the initial set-up

of the problem the coordinate is located on the contact surface

of drops which is not coincided with the CM of the system. (b)

After coalescence the liquid drop oscillates about the CM which

results in improper discretization of the liquid domain into

subvolumes. To achieve the proper discretization, either (c) the

coordinate origin is shifted to the CM or (d) the CM is shifted

to the origin of the coordinate system.
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experience a sharp turn from the axial to the radial di-

rection. Also, the magnitude of the velocity in this re-

gion changes quickly due to the high surface energies

involved. Consequently, the fluid motion experiences

larger viscous effects along the r-axis as compared to

that along the z-axis.

The first major effect of the Reynolds number vari-

ation on the motion of the surface point along the z-

axis is observed during 6:5 < t < 8 when the curves

shown in Fig. 3a start to separate. As the Reynolds

number is increased, the motion of the surface at the

end parts of the drops slows down and for Re > 40

reverse motions are recorded for these parts. A similar

phenomenon has previously been observed in the os-

cillation of a single drop [10,11]. In fact, the same ar-

gument can explain this reverse motion. Fig. 2c shows

Fig. 2. Time resolved shape evolution of the head-on collision of two equal-size drops with urel ¼ 2: (a) Re ¼ 5, (b) Re ¼ 30, and (c)

Re ¼ 60. The numbers on the figure represent the time.
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that, at t ¼ 0:75, a large concave surface is formed

around the spine which is at 45� with respect to the z-
axis. The formation of this concave surface prevents the

motion of the drop surface along the z-axis by pushing

the fluid towards the axis of symmetry. Notice that at

low Reynolds numbers, no such a concave surface is

formed (see Fig. 2a.)

The last slides in top rows of Fig. 2a–c show the

coalesced drops in their maximum surface deformation

situation for various Reynolds numbers. As expected,

higher Re values result in larger surface deformations.

The portion of the surface around the z-axis continues to

move inward due to its initial kinetic energy, until it is

faced with the adverse effects of the surface energy in this

area. The concave surface around the z-axis produces

adverse pressures which tend to prevent further inward

motions of the surface. From a numerical point of view,

this is the critical situation where higher Reynolds

numbers result in the failure of the surface reconstruc-

tion technique. The maximum surface deformation that

has been successfully simulated is seen in Fig. 2c for

Re ¼ 60 at t ¼ 1:27. A close inspection of Fig. 3a and b

reveals that both surface points along the z and r axes

experience small slow downs in their motions close to

the maximum surface deformation situation for

Re > 50. In Fig. 4 we have shown the minimum thick-

ness (zmin) and maximum radius (rmax) of the surface

reached during the simulations as a function of Re. It is

clearly observed that a decrease of Re substantially in-

creases zmin while reducing rmax. It is also seen in Fig. 4

that the curve for zmin shows a change of slope for

Re > 50.

The lower rows of slides in Fig. 2a–c show the reverse

motion of the surface toward the completion of the first

period of oscillation. The last slide of each figure depicts

the coalesced drop close to the end of its first period of

oscillations. Higher Reynolds number collisions result in

more elongated drops along the z-axis. We have also

calculated the period of the first oscillation based on the

maximum value obtained for the parameter s which is

defined as the ratio of the surface location along the z-

axis to that along the r-axis. The variation of the first

period with Re is given in Fig. 5. Two minima are noted

Fig. 4. Variation of the minimum thickness along the z-axis,

zmin, and maximum radius, rmax, reached in the head-on colli-

sion of two equal-size drops as a function of Reynolds number.

The impact velocity is urel ¼ 2.

Fig. 3. Motion of the surface point located on the (a) z-axis (b)

r-axis for different Reynolds numbers in head-on collision of

two equal-size drops with urel ¼ 2.
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on the curve, one at Re ¼ 5 and the other at Re ¼ 50.

The latter is explained by considering the slow-downs

occurred in the motion of the surface point along the z-

axis for Re > 50 (see Fig. 3a). The occurrence of the

minimum at Re ¼ 5 should be attributed to the surface

energy of the drop at maximum surface deformation

position. Fig. 2a at t ¼ 1:15 shows that with Re ¼ 5 no

concave curvature is formed around the z-axis. There-

fore, this part of the surface tends to decelerate the

reverse flow rather than to accelerate that which is the

case with higher Reynolds numbers. The larger period of

oscillation at Re ¼ 3 is due to the increase of the viscous

effects as the Reynolds number is decreased.

For cases with Re ¼ 5, 10, 30, 50, and 60 simulations

are continued for longer times until oscillations of

the combined drop fall within the linear region; i.e. the

amplitude of oscillations becomes less than 10% of the

radius of an equivalent spherical drop [12]. Shown in

Fig. 6 is the variation of the period of oscillation versus

the number of periods. The first period of oscillation,

which also includes the coalescence process, is consid-

erably smaller than the second period for all Reynolds

numbers. This is due to the initial kinetic energy of the

drops which accelerates the surface deformation during

the first half-period (see Fig. 2a–c). The second period of

oscillation is the longest one for all Reynolds numbers

and then the periods begin to decrease. For Re ¼ 30, 50,

and 60 the decreasing trend continues throughout the

simulation time, however, for Re ¼ 10 a minimum is

observed at the fifth period which is followed by an in-

crease in period. We have also calculated the decay

factor for the oscillations using the relation

Cn ¼
1

sn
ln

sn � 1

sn

� �
;

where Cn is the decay factor and sn is the period for the
oscillation number n. The variation of the decay factor,

for different Reynolds numbers, with the number of

periods is shown in Fig. 6b. A minimum in the curve is

observed for Re ¼ 5 and 10 while curves for Re ¼ 30, 50,

and 60 decrease continuously.

4. Collision of sheared drops

There are many practical situations in which liquid

drops are subjected to a tangential surface shear, e.g. a

Fig. 6. Variation of (a) period and (b) decay factor with

number of periods for the head-on collision of two equal-size

drops.

Fig. 5. Variation of the first period of oscillation in head-on

collision of two equal-size drops as a function of Reynolds

number. The impact velocity is urel ¼ 2.
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rain drop falling through the atmosphere or a drop

breaking off its parent liquid. The presence of a surface

shear could result in internal flows affecting the be-

havior of the drop [11]. Furthermore, if thermocapillary

effects are involved even stronger flows are induced

inside drops [13]. In this section, we wish to study the

collision of drops which have already been subjected to

tangential shear stress on the surface. In order to gen-

erate the internal flows, we first consider a constant-

magnitude tangential velocity, w, on the free surface as

the boundary condition. To satisfy the symmetry con-

ditions the surface velocity is assumed to be zero on the

z-axis. Once the flow field inside the drop reaches a

steady state, it is used as the initial velocity field to

study the collision of the drops. At this point, the time

is reset to zero (t ¼ 0) and the tangential surface ve-

locity is removed.

Three initial surface velocities are considered, i.e.

w ¼ �0:5, 0, 0.5 for drops with Re ¼ 50 and urel ¼ 2.

Only equal-size drops are studied here. Fig. 7a and b

shows the velocity field inside the drop before the col-

lision, observed in a coordinate system attached to the

CM of the combined drops. The impact velocity in this

coordinate system is equal to unity for each drop,

therefore, in the absence of the surface shear, the ve-

locity field would have been described as u ¼ �1 and
v ¼ 0 for the drop shown in Fig. 7. The application of

the surface velocity w ¼ 0:5 induces a clockwise circu-
lation inside the drop, and superposition of this velocity

field on the impact velocity results in an initial velocity

field as seen in Fig. 7b.

Shown in Fig. 8a and b are the time evolution of the

surface for cases with w ¼ 0:5 and )0.5, respectively. A
comparison of the slides which belong to equal times

reveal the differences in the shape evolution. For ex-

ample, at t ¼ 0:7 a flat region around the z-axis is seen
for the drop with w ¼ �0:5 in Fig. 8b. The shape of the
coalesced drop when it attains its minimum thickness

along the z-axis is shown in Fig. 8a and b at t ¼ 1:20
and 1.25 for drops with w ¼ 0:5 and )0.5, respectively.
It is clearly seen that a clockwise internal circula-

tion (generated by a positive surface velocity) results

in a thinner drop and at an earlier time (1.20 versus

1.25).

In Fig. 9a and b we have plotted the motion of the

surface points which are located on z and r axes, re-

spectively. An inspection of this figure, and also Fig. 8a

and b, reveals that the surface evolution is not signifi-

cantly affected by the internal circulation for t < 0:6.
Fig. 9a shows that at t ¼ 0:6 the curves start to separate.
Although, for all cases a backward motion is observed

for the point on the z-axis, this motion is more visible for

the case with w ¼ 0:5. This is contrary to the fact that a
positive surface velocity produces an initial velocity

along the z-axis toward the center of the drop and in-

dicates that the fluid which is pushed along the z-axis is

substituted by the fluid pushed toward the z-axis in the

radial direction.

The variations of the period of oscillation and the

decay factor with the number of periods were also

studied (not shown here). The results showed that the

period of oscillation is the largest for w ¼ 0. Therefore,

the addition of the internal circulation results in a de-

crease in the period, irrespective to the direction of the

circulation. Nevertheless, a counterclockwise circulation

decreases the period of oscillation more than a clockwise

circulation having the same magnitude. It was also

found that at long times, as the effects of the initial

circulation disappears, the periods of oscillation for

different cases approach the same value.

Fig. 7. Initial velocity fields used for the simulation of the

sheared drop collision; Re ¼ 50, urel ¼ 2: (a) w ¼ 0:5 and (b)

w ¼ �0:5.

F. Mashayek et al. / International Journal of Heat and Mass Transfer 46 (2003) 77–89 83



5. Effect of drop size ratio

In this section, we consider the collision of non-

equal-size drops. As pointed out in Section 2, the study

of this case becomes more complicated since the velocity

of the CM is not constant for the collision of non-equal-

size drops. Furthermore, the surface experiences large

deformations which can be captured by using a coordi-

nate shift technique as explained in Section 2.

The first set of simulations considered here, investi-

gates the effect of variation of the impact velocity on the

outcome of the collision of two drops with the size ratio

D ¼ 0:5. The size ratio D is defined as the ratio of the

radius of the smaller drop to that of the larger drop. The

Reynolds number is held constant at Re ¼ 50 for all

simulations. Four cases with urel ¼ 0, 1, 2, and 3 have

been considered. In Fig. 10a and b we have shown the

temporal evolution of the surface for the two limiting

cases with urel ¼ 0 and 3, respectively. All of the results

are presented on a coordinate system that moves with the

initial velocity of the CM. In Fig. 10b, surface shapes are

given in smaller time intervals during the initial stages of

collision, therefore, details of the coalescence process are

more clearly seen in this figure. As expected, a larger

impact velocity results in a larger penetration of the

smaller drop inside the larger one. A comparison of the

figures at identical times reveals the effect of the impact

velocity. In the very early times, the large surface cur-

vature formed at the contact plane pushes the surface

outward and the largest surface deformations are ob-

served in this region (compare the slides at t ¼ 0:08).
Later, the kinetic energy effects become dominant and

the surface shapes for the smaller drop differs dramati-

cally based on the impact velocity. For example, a

comparison of the surface shapes at t ¼ 0:26 (for the case
with urel ¼ 3 consider t ¼ 0:255) shows that the small
drop is about to being completely absorbed into the

larger drop for urel ¼ 3 while it remains virtually intact

for the case with urel ¼ 0. After the completion of the

coalescence process, the combined drop begins to oscil-

late non-symmetrically. The amplitude of the oscillation

is larger for the case with higher impact velocity.

Fig. 8. Time resolved shape evolution of the head-on collision of two sheared equal-size drops with Re ¼ 50 and urel ¼ 2: (a) w ¼ 0:5

and (b) w ¼ �0:5.
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In Fig. 11a and b we have shown the surface evo-

lution for collision of drops with D ¼ 0:7 and 0.9, re-
spectively. For both cases Re ¼ 50 and urel ¼ 2. Fig. 11b

shows that even a small deviation from D ¼ 1 results in

a highly non-symmetric coalescence process. In general,

for all the cases studied here, irrespective to the impact

velocity and drop size ratio, the early stages are char-

acterized by larger surface deformations of the smaller

drop. After the surface of the combined drop reaches its

maximum deformation on the side of the smaller drop,

then the other side of the surface approaches its max-

imum deformation. As a result, the surface points on

the z-axis oscillate with a phase shift. To further dem-

onstrate this point, in Fig. 12 we present the temporal

variations of the radii of the drop along the z-axis on

the sides of the smaller (- - -) and the larger (� � �) drops.
It is also noted that, at longer times when the oscil-

lations of the combined drop decays and the drop

approaches a spherical shape, the phase shift is elimi-

nated.

An important issue in the study of drop collision is

the extent of mixing of the fluids that form each initial

drop. Although in this study we have made no distinc-

tion between the liquids in the two drops, an investiga-

tion into the mixing process can be conducted by

considering the traces of fluid particles. In Fig. 13 we

have shown fluid particle traces for the two cases con-

sidered in Fig. 11. The trace is found by following the

particle in a Lagrangian frame. At each time step the

velocity of the particle is calculated by interpolating

the Eulerian node velocities using the finite element

isoparametric mapping. Then the particle is moved to its

new location using the following explicit scheme:

ziðt þ dtÞ ¼ ziðtÞ þ uidt

riðt þ dtÞ ¼ riðtÞ þ vidt

where ui and vi denote the velocity of the particle i in
axial, z, and radial, r, directions, respectively.

A total of six particles are considered in each case,

three are initially located near the axis of symmetry and

three others are close to the free surface. Also shown on

the figures is the initial configuration of the drops

which clearly specifies the relative locations of the

particles at t ¼ 0 shown by (d). As expected, there is a

larger penetration into the larger drop at smaller size

ratios. It is also clear that the major portion of the

penetration occurs in the short initial interval t6 1,
during which the coalescence process is in progress. For

t > 1, the motion of the fluid particles is mainly oscil-

latory and the net displacement may not be as large as

in t6 1 period.

6. Conclusion

The head-on collision of two liquid drops is studied

using the SFM of Mashayek and Ashgriz [10]. Only the

coalescence collision is considered and the effects of the

Reynolds number, drop size ratio, impact velocity, and

internal circulation on the behavior of the combined

drop are investigated. In collision of equal-size drops, an

increase of the Reynolds number results in increasingly

thinner drops during the coalescence process. When

collision of non-equal-size drops is considered, the early

stages of coalescence involves considerably larger de-

formations for the smaller drop. A study of the motion

of the drop surface along the axis of symmetry reveals

that the two ends of the combined drop begin to oscillate

with a phase shift for collision of non-equal-size drops.

At longer times, the drop approaches a spherical shape

and the phase shift is eliminated. The period of oscilla-

tions for the combined drop is also measured and it is

found that the first oscillation period is always shorter

than the second period, regardless of the Reynolds

number. The effects of an initial internal circulation

within the drops are also investigated and the differences

in shape evolution and period of oscillations are high-

lighted. These effects are primarily contained within the

first few oscillations.

Fig. 9. Motion of the surface point located on the (a) z-axis (b)

r-axis for different surface velocities in head-on collision of two

sheared equal-size drops with Re ¼ 50 and urel ¼ 2.
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Fig. 10. Time resolved shape evolution of the head-on collision of two drops with size ratio D ¼ 0:5 and Re ¼ 50: (a) urel ¼ 0 and (b)

urel ¼ 3.
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Fig. 11. Time resolved shape evolution of the head-on collision of two drops with Re ¼ 50 and urel ¼ 2: (a) D ¼ 0:7 and (b) D ¼ 0:9.
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Fig. 13. Lagrangian particle traces for six different particles in head-on collision of drops with Re ¼ 50 and urel ¼ 2: (a) D ¼ 0:7 and (b)

D ¼ 0:9.

Fig. 12. Motion of the surface point located on the z-axis (- - -) on the smaller drop side and (� � �) on the larger drop side. (––) shows the
difference between the two curves. Re ¼ 50, urel ¼ 2, and D ¼ 0:7.
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